Categorias
Artigos

Engenheiros deveriam ter mais aulas de matemática, e não menos

Hoje eu sou Professor de Engenharia Mecânica, mas eu lembro de uma época em que eu fui aluno; e desde aquele época, uma das coisas que mais me irrita ouvir é variações do tema:

A Engenharia de hoje é toda computadorizada; devemos eliminar as aulas de Cálculo e Álgebra Linear no currículo, que são inúteis, para dar lugar a disciplinas mais avançadas!

Alguém que geralmente foi mal em Cálculo

Não me leve a mal: Cálculo e Álgebra Linear não são disciplinas fáceis ou agradáveis, e tenho colegas que de fato foram mal nestas aulas e hoje são engenheiros e engenheiras de respeito. Mas isso não serve de evidência para o argumento acima.

A Engenharia é resolver problemas práticos da sociedade com baixo custo e baixo impacto ambiental. Considere o objetivo de movimentar cargas e pessoas em automóveis motorizados: um problema prático é reduzir as emissões de poluentes de monóxido de carbono e hidrocarbonetos, compostos tóxicos. O que acontece é um balanço de efeitos: quanto menos ar, mais compostos se formam pela combustão incompleta – mas ao mesmo tempo, se há ar demais e combustível de menos, o ar vai absorver energia da combustão, abaixar a temperatura e também vai ocasionar combustão incompleta. Quando se tem um fenômeno que resulta de uma soma de efeitos, esse problema pode ser modelado por equações diferenciais. Saber resolver esse tipo de equação não é um item em uma lista de exercícios; é uma questão de estimar, e então tentar reduzir, as emissões de gases tóxicos.

Em A Mind at Play, Jimmy Soni e Rob Goodman falam dos primórdios da computação, que era à base de computadores mecânicos, analógicos, e não digitais. E o que esses diferentes computadores faziam era resolver diferentes classes de equações diferenciais. Algo que aprendi com o livro, por exemplo, era que Lord Kelvin, famoso pela sua escala de temperatura, também trabalhou no final do século XIX em um analisador harmônico, que conseguia prever, com muita precisão, o movimento das marés em um dos portos britânicos, a partir de dados passados. Deixe-me ser claro: você usava um lápis conectado na máquina para desenhar um gráfico das marés em um mês, girava manualmente algumas engrenagens, e o aparelho desenhava (após algumas horas) um outro gráfico prevendo as marés no mês seguinte – e geralmente acertava. Isto é, literalmente, aprendizado de máquina.

Essa playlist sensacional explica um outro tipo de analisador harmônico:

Agora imagine Lord Kelvin, um dos pioneiros da computação analógica, se queixando de ter de estudar cálculo.

Eu sei o que o leitor vai dizer em seguida: “mas eu não estou interessado em construir uma máquina ou desenvolver um software, só quero fazer simulações em um programa já pronto”!

Eu fiz muito disso em meu doutorado. Simulei o campo magnético de ímãs, usando um programa pronto (que, adivinhe, resolvia equações diferenciais), e comecei a notar alguns resultados estranhos. Quando você faz uma simulação computacional, você começa com uma malha (um conjunto de pontos) bem grosseira e, à medida que você vai adicionando pontos, a simulação vai ficando melhor, até uma hora que adicionar mais e mais pontos não muda o resultado final e só toma mais tempo de computação; isso é o sinal de que a malha está fina o suficiente. No meu caso: eu notei que, nos cantos dos ímãs, quanto mais e mais pontos eu adiciona, pior ficava o resultado, sem nunca estabilizar. O que está acontecendo?

Foi só quando eu parei para analisar as equações diferenciais, e estudar a teoria por trás do programa, foi que eu aprendi que isso era esperado, e o programa de fato não conseguiria simular os cantos.

Outro exemplo do meu doutorado, dessa vez simulando o escoamento de água em um trocador de calor. O programa me forneceu uma planilha de resultados, com os dados de velocidade em cada seção do trocador; ele simplesmente resolveu as equações diferenciais adequadas. Mas quando parei para analisar os resultados, notei algo estranho: a massa não se conservava. O trocador tinha uma entrada e uma saída, mas eu, sem muito conhecimento do programa que estava utilizando, digitei de forma errada os parâmetros; era como se a equação diferencial tivesse uma segunda saída de água, que estava sumindo dos cálculos. Novamente, foi quando parei para analisar as equações diferenciais, que vi o problema.

Esses exemplos não são abstratos. O ímã e o trocador de calor foram fabricados e instalados em um sistema real, custando dinheiro de verdade para fazer isso – e foi o exame minucioso da teoria, por parte dos meus colegas e de mim, que preveniu grandes erros de engenharia.

Assim, deixe-me dar um conselho: quanto mais Cálculo a leitora souber, melhor engenheira vai ser. Tudo bem, eu concordo que você não vai resolver equações diferenciais à mão como fazia nas aulas, e um computador (agora, digital) vai fazer isso para você. Mas é o conhecimento implícito, que se imprimiu no seu subconsciente, que vai lhe permitir analisar dados e detectar erros e oportunidades de melhoria.

Eu estou falando de Engenharia porque é o que eu conheço, mas posso facilmente imaginar a importância de médicos conhecerem bem biologia, ou psicólogas mergulharem fundo na filosofia.

Calouros e calouras: não menosprezem as fases iniciais. Vai valer a pena depois. Você sonha em trabalhar com Aprendizado de Máquina? Pergunte a alguém que trabalha na área o quanto de Álgebra Linear é necessário – e depois comente aqui.

Por Fábio Fortkamp

Pai do João Pedro, Marido da Maria Elisa, Professor do Departamento de Engenharia Mecânica da Universidade do Estado de Santa Catarina, católico devoto, nerd

Deixe um comentário

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logotipo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair /  Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair /  Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair /  Alterar )

Conectando a %s

Este site utiliza o Akismet para reduzir spam. Saiba como seus dados em comentários são processados.